v v

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS

1. REPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER
ALGO PUB @124

4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERED
Optimal Fix Estimators and a Variation FINAL
on the Cramer Kao Lower Bound 5. PERFORMING ORG. REPORT NUMBER

=4718
7. AUTHOR(s) 3. CONTRACT OR GRANT NUMBER(e)

Institute for Decision Sciences
Claremont McKenna College

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::gﬁa&AgOEA-KESErTT'NPU':AOBJ!ESJ' TASK
Jet Propulsion Laboratory, ATTN: 171-209

California Institute of Technology

4800 Oak Grove, Pasadena, CA 91109 RE 182 AMEND 4187
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Commander, USAICS 23 Sen 87

ATTN: ATSI-CD-SF 13. NUMBER OF PAGES

Ft. Huachuca; A7 = ‘%?

Ya. MONITORING AGENCY NAME & ADDRESS(If ditlerent from Controlling Office) 15. SECUR/TY CLASS. (of thia ceport)
Commander, USAICS T__—QW
ATTN: ATSI-CD-SF se. DESEOILE oING

~NONE—

16. DISTRIBUTION STATEMENT (of thie Repori)

Approved for Public Dissemination

17. DISTRIBUTION STATEMENT (of the abatract entersd in Block 20, 1 different from Report)

18. SUPPLEMENTARY NOTES

Prepared by Jet Propulsion Laboratory for the US Army Intelli-
gence Center and School's Combat Developer's Support Facility.

19. KEY WORDS (Continue on reverss aide if necessary and identity by block number)

Optimal Location Estimate2 Weighted Mean Square, Generalized
Cramer Rao Lower BRound, s<-biased Fstimators, L{nearization,

Optimal, Uniformly Minimum Variance Unbiased Rstimator (UMVUE)

20. ABSTRACT (Continue an reverse side if necessary and identity by block number)

Via an appendix, the Cramer Rao lower bound is generalized: Of
all linear estimators of fix (ie. two dimensional) error with

82 bias, the Least Squares estimator has the smallest error
ellipse. The report discusses the assumptions of error
independence and the linearization of error model and correspond-
ing small errors. By combining this report with "Two Dimensional
Uncorrelated Bias in Fix Algorithms", DTIC #AD- Al189473, the

"beat" fix algori;hm is Minimization of Sguared Angular Error

romm
DD , an 7 473 romon or 1 noves s ossoLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

-5
2l

- T

-~

o

"R THERE ey




7057-106

U.S. ARMY INTELLIGENCE CENTER AND SCHOOL
Software Analysis and Management System

Optimal Fix Estimators and a Variation
on the Cramer Rao Lower Bound

03 September 1987

Author:

Approvai:f 4%<Zi; (/72;7 ..
L L 44/

Algorithm Analysis Subgroup USAMS Task

|
\ COHQur. ]
' /’ // \‘/\'\w e~ /Z{’v A?Z:..

<A, F. E man, Manag

er
Grouag, ata Systems éection

-7

Fred Vote, Manager
Advanced Tactical Systems

JET PROPULSION LABORATORY
California Institute of Technology
Pasadena, California

JPL D-4718

Jafies W.” Gillis, Subgroup Leader Edward J. Records, Supervisor




é PREFACE

The work described in this publication was performed by the
Institute For Decision Sciences (IDS) under contract to the Jet
Propulsion Laboratory, an operating division of the California
Institute of Technology. This activity is sponsored by the Jet
Propulsion Laboratory under contract NAS7-913, RE182, Al87 with the
National Aeronautics and Space Administration, for the United States

Army Intelligence Center and School.

This specific work was performed in accordance with the FY-87

statement of work (SOW #2).

,jzgyession For
[ms GRAAI 4

DTIC TAB 0
lmmmmmmm
iii ! Juﬁ‘iriﬂﬂtioll____
‘ By.

rng!ﬁﬁribut%9n/

__fnglgbility Codes
[Avail andfor |

fDlst. Special

‘\,\

P L N I T N T L T N TAY BV IV I TAV WLV VLY WLy WA W MR N T sV n d a¥0 ath a¥8 atd a't o' 38,40 870,00, 0 V8 o'




i

CONTENTS

’a'.;
SUMMARY .« « v o o o o o« o o o o o o o o o o o o o o o 1 é!

‘ X

I. OPTIMAL ESTIMATORS IN STATISTICS . « « « o « « « « « . 3 i:

A. OPTIMALITY HAS NO UNIQUE DEFINITION . . . . . . . 3 s

B. BIAS +» + v o o o o o o o e e e e e e e e e e e 3 %

C. VARIANCE . « ¢ « « + o« o o o o o o o o o o o o o & 3 %j

D. UNIFORMLY MINIMUM VARIANCE UNBIASED ESTIMATORS 3

AS OPTIMAL + + « & & « o o o o o o o o o o o « « & 4 N

E. CRAMER RAO LCWER BOUND AS A MEANS OF FINDING UMVUEs 4 %{

| F. DIFFERENCES BETWEEN THE FIXING CASE AND THE -
| STANDARD CASE « + ¢ o o v « o o o o o o o o o o 4 b
| b
é II. FIX MODELING ASSUMPTIONS .« « « « o + « « o o o o o o & 5 s
| A. BEARING ERROR DISTRIBUTION . . « « « & « « o« « « . 5 ;:
B. MINIMIZATION OF SQUARED ANGULAR ERROR . . . . . . 5 o

C.  SMALL ERRORS AND LINEARIZATION . . . . « « « « . . 5 ﬁ

D. WEIGHTING TO ATTAIN OPTIMAL LINEARIZATION . . . . 6 B

E. ELLIPSE DEPENDENCY ON LINEARIZATION . . . . . . . 6 i

F. THE QUALITY OF THIS REPORT IS RELATIVE TO THE ﬁ%

LINEAR APPROXIMATION  + « « « o o & o« o o« o o « . 6 :ﬁ:

III. PROBLEMS WITH THE FIX MODELING ASSUMPTIONS . . . . . . 7 aﬁ

A. BIAS RESULTING FROM THE NON-LINEAR TERMS . . . . . 7 ‘ég

B. BEARING SELECTION MODEL IMPACT . « « « o « « « « . 7 kﬁg

C. DEPENDENT BEARINGS « « « & & o o o o o o o o o « & 8 B

D. IS o (ANGULAR ERROR STANDARD DEVIATION) 3@

KNOWN OR UNKNOWN + « o + o « « « o o « « o o o « & 8 ;:g‘.i




IV. OPTIMALITY TO WITHIN TERMS OF ORDER O « ¢« ¢ ¢ + o o o o 8
A. BIAS OS OF ORDER O . . ¢ « &« « ¢ &+ o o« o o«
B. CRAMER RAO LOWER BOUND CAN BE GENERALIZED . . . . 9
C. WHICH METHODS ARE ORDER o OPTIMAL? . . . . .
D. THE ’BEST’ ORDER o  OPTIMAL METHOD . . . . . . . . 10

E. HOW SIGNIFICANT IS THE ALGORITHM INDUCED BIAS? . . 10

APPENDICES

A. MATH APPENDIX . . . . + ¢« « « +




( | {

- SUMMARY

.“"“-«-) The fix estimators MARC (Mathematical Analysis Research Corportation) has
examined in fielded systems have a property which implies that these fix estimators
approach optimality. Explaining the meaning of this statement and the
qualifications that go with it is the purpose of the main body of this report. Proof's

e

needed are included in a Math Appendix. e e e e
..

A list toplcs covered in the individual sections of this report follows:
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Q~-I-— QPTIMAL ESTIMATORS IN STATISTICS J }

? A. Optimality has no unique defmmy.‘m

B. Bias /

s
d
4

C Variance
D. Uniformly Minimum Va;izé Unbiased Estimators (UMVUEs) as
optimal. ~
E. Cramer Rag Eb6wer Bound as a means of finding UMVUEs.
F. Digvc\‘é:etwcen the fixing case and the standard case:
) /Iﬁ the fixing case,
1. no unbiased estimators exist
2. bearing measurements are not identically distributed

3. estimating location involves determining more than one

parameter.

A. Independent Normally distributed bearing error with common

standard deviation, ¢.
Minimization of Squared Angular Error
Small errors and linearization

B
C
D. Discussion of weighting as means of linearizing optimally
E "Ellipse dependence on linearization

F

Optimality being relative to the linearized model PR U

N .z‘
" 1+ PROBLEMS WITH FIX MODELING ASSUMPTIONS § - /
¥ )
A. Bias resulting from the non-linear terms
B. Bearing selection interfering with the fix modeling assumptions
C  Possibility of dependent bearings
D. If ¢ is known, then better models are possible
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/A Bias is of order o2 ]
B. Cramer Rao Lower Bound result can be generalized to order o2

C  Which methods are order 62 optimal?

D. Choosing the best order o2 optimal method without considering data /'/’
storage and computation time.

E. How much does choosing the best order o2 optimal/,nmmﬁ/m/auer?
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L. OPTIMAL ESTIMATORS IN STATISTICS
A.  Optimality . {cfiniti

The estimator which is ‘best’ in any particular situation depends on
the nature of:

1) The information available to be used by the estimator.

2) The overall reward/penalty function whick applies, considering the
variety of behaviors the estimator may exhibit and the applications
to be maie of it.

Analysis can only approximate these two considerations. What statistics

does do is identify measures of desirable behavior and the means of

optimizing these measures given idealized input.
B. Bias

Estimators produce different results depending on the nature of the
errors in the observations. The size of the error in the fix depends upon
chance. In practice, only one fix is made. It is useful however to imagine
averaging all of the fixes that chance might have prnduced. If these
potential fixes are weighted by the probability of their occurrence, then
one has the ‘expected fix'. If the 'expected fix' turns out to be located at
the true emitter, then the estimator would be referred to as unbiased.
When the 'expected fix' turns out to be located away from the true emitter,
exactly how far apart these two points are becomes an issue of concern.
In this case, the estimator is referred to as biased and the distance
between the points is called the bias.

Estimators used in practice are biased. The ‘expected fix' is short in
range of the true for the most commonly used estimator. However, the
bias (distance short) is usually small (small in comparison with the
variance).

C  Yariance

While bias is the distance between the 'expected fix' and the true
emitter, variance is a means of measuring the aveiage distance between
the 'expected fix' and individual estimates. If the variance of an
estimator is large, any confidence in the accuracy of the estimate is
limited. A small variance indicates an estimator which will consistently
give similar estimates. However, varianc. does not include any measure
of the distance between the 'expected fix' and the true. It is quite possible
to have an estimator with small variance which estimates the location to
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be a significant distance from the true position of the emitter owing to
bias.

As was mentioned above, there exists no unique definition of what
constitutes an optimal estimator. In part, when defining an cptim~’
estimator, one must consider the constraints of available inform. “on.
Estimates of both bias and variance fall within these constraints, “ut
minimizing only bias without considering variance (or vice-versa)
allows no control over the size of the variance. The optimal method, then,
with regards to both bias and variance, is to minimize both. Standard
practice has been to minimize the variance of an unbiased estimator, if
such an estimator can be found. if such an estimator exists, then it is
known as the uniformly minimum variancc unbiased estimator (UMVUE).

The Cramer Rao Inequality provides a lower bound for the variance
of an unbiased estimator. Thus, in attempting to determine which is the
‘best’ unmbiased estimator among the set of unbiased estimators, the Cramer
Rao Lower Bound can be utilized as a measure. Specifically, if the
variance of an unbiased estimator satisfies the Cramer Rao lower bound,
then that estimator can be said to have the minimum variance among
unbiased estimators (in other words, a UMVUE). Such an estimator would
then be optimal with regards to bias and variance.

w : ’

In our case,

1) There are no existing unbiased fix estimators. For the two LOB case,
it can be shown that when o2 is unknown, it is not possible for an
estimator to be unbiased. For three or more LOBs, however, it has not
yet been resolved if an unbiased estimator can exist. Even so, the
authors of this report are unaware of any existing unbiased
estimators.

2) Bearing measurements are not identically distributed due to the fact
that they all have different means (expzcted values).

3) Usually, finding UMVUEs requires estimating only one parameter.
Yet, estimating location requires determining both an 'x' and a 'y’
parameter in order to estimate location.




I FIX MODELING ASSUMPTIONS
Optimality is measured against models and hence one must be careful
about modeling assumptions when discussing optimality.
A. Bear fistributi

The assumptions are:

1) Independence - This means that the size and direction of a particular
bearing error does not influence the size and direction of another
bearing error. An exampie of where this assumption loses validity is
when error is induced by inaccurate determination of True North.

2) Nommally distributed error with mean zero - Normality is not
absolutely required. Symmetric error with mean zero is the most
important property of the normal distribution that is needed.

3) Common standard deviation - Knowledge about differences in the
standard deviations of different bearings should be used if available.
Unknown differences can be tolerated so long as the difference is
not too severe. Different signal to noise ratios at different sensors is
an example of what might signify a difference in angular error
standard deviation.

B. Minimization of Squared Angular Error

This model assumes that the error is in the bearing angle as opposed
to the sensor location. Furthermore, in order to find the best fix, a score
is computed by taking the angular error and squaring it. Thus, a bearing
error three times as large would be nine times as bad. This is one of the
consequences of assuming normality. One ‘wild' bearing (from another
emitter perhaps) can have a very large impact because of this
assumption. If a higher power were used, then outliers would determine
the fix estimate completely.

C. Small errors and linearization
Fix algorithms take advantage of the fact that angular error is small.
Linearization of angular error into spatial error is relatively accurate
because angular error is small. If this were not true, then:

1) Fixes would be very biased.
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2) The "Weighted Perpendicular’ method (the name used in MARC
reports for the most frequently used method of approximating
minimization of anguiar error) would not be a good approximation to the
Minimization of Squared Angular Error Method which it is supposed to
behave like.

Weighting to _attain optimal linearization

The 'Weighted Perpendicular’ method iteratively reweights data on
the basis of the latest estimate of the fix location. The limitations on
reweightings of updated fixes is one of the major differences beiween
algorithms (limitations are caused by memory and speed limitations of the
computer). The objective of the reweighting is to obtain a solution in
terms of the best lincarization of the angular error that can be found.
Not all algorithms are optimal in this reweighting sense because of
memory and speed limitations.

Elli l i li .

The ellipse comes from a quadratic form. Tha: quadratic form is
based on the covariance of a linearization (in the sense of a Taylor Series
to the first derivative). If angular errors were not small, then the correct
family of curves to use to indicate error regions would be much more
difficult to manipulate.

The optimality of concern in this reyort is qualified. It will only
assert optimality to within a small second order term. This qualification
should be expected, however, as most of fix estimation theory is based on

the same qualification.
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After reading the previous section, it should not be surprising that
non-linear terms are one of the major problems with fix modeling
assumptions. Bias is the most significant impact of rion-linear terms. It is
the difference betweer .'here you would expect a fix to be located on
average and where ‘it really is. When non-linear terms are small, bias is
not noticeable. This is frequently the case. Nonetheless, bias does exist
for all methods except under very special circumstances. The direction
and size of bias can vary from method to method. For the "Weighted
Perpendicular' method with three or more bearings, bias can be shown to
point short along the range. For other methods, bias can be long.

One of the disadvantages of the 'Weighted Perpendicular’ method is
that bias does not necessarily get smaller as the sarcple size increases. In
fact, bias may even increase with sample size. If a large amount of data is
going to he used in a fix, there are better methods. Unfortunately, the
other methods require storing all of this data.

Bearing sclection is not part of the fix model as used by the Army
systems reviewed by MARC. Other models, such as those which add a
uniform background to a truncated normal, may reflect bearing selection
issues but MARC has not investigated this aspect of the question. It is
clear, however, that bearing selection -~an interfere with the assumption

of normality. There are many possible 1epercussions of this loss. For

example, minimizing the squared error may not be optimal.
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Dcpendept  bearings

If pearing errors arc dependent on one another (for rcasons such as
a shared error in determination of True North), then fix errors should be
expected to be larger than aommally predicted. If the dependence is
strong enough, then an optimal model would attempt to account for this
dependence.

la r_Standar viati w

The current models are ambiguous with respect to knowing c2. If g2
is known, then it would be possible to correct for fix algorithm induced
bias. Even a known lower bound would yield a lower bound correction.
The correction would be suspect if g2 is not constant across bearings,
however. The methods of ¢2 determination that have been reviewed by
the authors of this report raise more questions about underlying models

than they resolve.

IV.  OPTIMALITY TQ WITHIN TERMS OF ORDER g2

A.

Bias is of order g2

Showing that bias must be of at least order o2 (when 62 is unknown)
for panticular algorithms is simple. Showing it for all algorithms in
general is less so. -The two bearing case, however, can be shown to be of
order o2 for all algorithms. Correcting for the bias of the intersection
(the two bearing case) depends on knowing 62 and 62 cannot even be
estimated using two bearings. Since 62 can be estimated with three or
more bearings, it seems possible that there might be an order a4
algorithm that could be constructed in these cases. The authors of this

report know of no such algorithms in use. Problems in the estimation of




62 suggest to the authors of this report that such algorithms would have
limited application in any case.

Since bias of order 62 exists in most, if not all, fielded systems, it
seems rcasonable to ask whether fix algorithms are optimal to within a
term of order 62. That is the purpose of this report. Finding the method
with the smallest order 62 term is a reasonable follow-up question. This
question has already been addressed in part for a broad class of fix
algorithms in MARC's Two Dimensional Uncorrclated Bias in Fix
Algorithms (12 March 87).

Cramer Rao Lower Bound can be generalized

The Cramer Rao Lower Bound is a theorem which gives a bound on
how accurate an unbiased estimator can be (where accuracy is measured
by the size of the variance). Since there are no unbiased estimators, a
generalization of the Cramer Rao Lower Bound is needed. Such a
generalization is derived in the Math Appendix. The differences between
our version of the Cramer Rao Lower Bound and versions found in Wilk's
Mathematical Statistics are :

1) The result in this report is for order 62 biased estimators.

2) The result in this report is for 2-dimensional estimators instead

of one-dimensional estimators. (A partial result for n-
dimensional estimators is also in this report.)
Which methods are order a2 optimal?

All fielded systems that MARC has reviewed are order 62 optimal. The
only theoretical method which MARC has examined which is not opiimal
to within order 62 is the unweighted version of the Perpendicular

Method. The variance of all other methods are essentially the same.
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D. The ‘best’ order o2 optimal method

There is a difference in the order 62 term of various methods. The

impact of this order 02 term on bias is much more important than its
impact on the variance. Minimization of Squared Angular Error and
methods similar to it have a smaller order 62 bias than the more
commonly used Weighted Perpendicular Method.

Botk the Minimization of Squared Angular Error and Weighted
Perpendicular Methods can only be used in their intended form as long as
bearings are saved. After eliminating bearings, both methods must give
way to the suboptimal version of the Weighted Perpendicular. Therefore,
the only justifications for use of the Weighted Perpendicular are greater
simplicity in the coding of the algorithm and simplicity of computation.
The Weighted Perpendicular method also generalizes easily to a 3-

dimensional method.

H {onifi is_the algorithm _induced bias?
It depends on:
1) Sensor accuracy (With very accurate becarings, the bias is
insignificant).
2) The number of bearings kept before using the suboptimal

approach. With two bearings, there is no difference. With
four or more bearings, the difference is of more interest.
3) The range of compass headings over which bearings are
taken (excluding bearings taken from much further away
than the nearest sensors to the emitter). If the range is too

small, then bias can be very significant.

Furthermore, if error originates from other sources than bearing




accuracy such as sensor location error, then both Weighted Perpendicular
and Minimization of Angular Error arec less than optimal. It is this last
consideration that has led the authors of this report to conclude that
changing from Weighted Perpendicular to Minimization of Squared
Angular Error need only be of concern where location estimates can be
shown to have been short in range on average (This is the form of bias
which the Weighted Perpendicular exhibits). Even in this case, there may

be other causes besides the difference between these two algorithms.
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MATH APPENDIX

DEFINITIONS:

Let ei = ith piece of observed data (bear:ng from sensor i
in our application).

Let (al,...,an) be the true location in n-space (of the emitter in
our application).

Let (X1,X2,...,Xn) = (x1(e1,92....,em),...,Xn(e1.92....,em)).

Let (X1,...,Xn) be estimators of (al,...,an) such that
E{(X1,...,Xn)} = (al,...,an) + (0(a?),...,0(a?))
where 0(h(o)) is such that, k = O(h(¢)) means that as ¢ approaches
some limit, k(g¢) is dominated by some positive constant multiple

of h(o). (See Olmsted, John M., Real Variables , Apple Century
Crofts, Inc., 1956, pg. 169)

Let f(91....,6m;(a1,...,an)) be the probability density function of the
continuous random variable ©.
Let D denote a directional derivative in the direction (u1,...,un).
Let L = -log(f) with (a1,...,an) evaluated at (X1,...,Xn) as the defining
equation for the (X1,...Xn) vector (i.e. Minimize L or determine
the critical point(s) of L with respect to (X1,...,Xn)).
Let S = Dlog(f).
Let COV = Cov(X1,...,Xn).
Let MSEiJ = E{(Xi-ai)(Xj-aj)} = Mean Squared Error.

The above definitions are utilized in seven important and interrelated

results.

RESULT#
OV = MSE + 0(o%)
Proof':
covU =« E{(X1-E[X1])(XJ-E[XJD)}
= E{(Xi=a{+E[Xi-ai])(XJ=aJ+E[XJ-aj])]

= E{(Xi~a1)(XJ=aj)} + E{(Xi-ai)E[XJ-aj]} + ... + EfXi-ai}E{Xj-ad}




- ll

RESULT#2

The directional variance satisfies

T 2
(u ,...,un) MSE (ui,...,un) 2 1+0(0¢)

‘ ENS)TT
Equality holds if
us(X1~al,X2-a2,...,Xn-an) is proportional to S
Proof:
(u1,...,un) = D(u1;....un) - Dfeeo (X1,00.,xn) £ + D(0(02),...,0(02))

Dfeef (Xx1,.00,xn) £ = (al,e.ean)DfecS F

+ (0(02),...,0(02))

Joool (x1,...,%xn) D[f]) - (al,...,an)f...S D[f]

+ (0(02),...,0(02))

foood [(x1,..0,xn)=(al,...,a0n)] D[£] + (0(0?),...,0(02))

E{[(X1,...,Xn)~(al,...,an)1(S)} + (0(e2),...,0(c2))

Taking the dot product on both sides with (ul,...,un) and squaring,
. 2yv12
l(u1,...,un) (u1,...,un) + 0(¢g )‘
= [E{[(uy,...,u )(X1=a1,...,Xn-an) ](5)}]2
Now, by the Cauchy-Schwarz inequality
|(u1....,un)'(u1,....un) + 0(02)|2

< E{[(u1,....un)(x1-a1,...,Xn-an)]zlE{(S)Z}

= (uyy...,u ) MSE (u1....,un)T E{(S)2}

DEFINITIONS AND ASSUMPTIONS APPLYING TO THE NORMAL CASE:

Assume the ©, are independently Normally distributed with mean ,

i
61(a1....,un) and standard deviation, o2,

Further, assume that the function associated with the mean above may be

computed at the estimate, i.e. 61(x1,...,Xn).
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(i.e. The true

Finally, assume that Xi evaluated at (a,,...,a ) is a
1 n

i
parameter ic computed if there is no 'observation error' and the
mean observation is the no error case).

Let €y = 0

error,

i ei(a1,...,an). In some cases, this may be interpreted as

Let = -
81(51...en) X1(91,62...6n) Xi(e1+e1(a1...an),...,en+9n(a1...an))

81 e denotes the partial derivative with respect to ¢, evaluated at

1 k k

ei-o for all i.

Bi o denotes the partial derivative with respect to aj.

1 4

MSEL represents the Mean Standard Error matrix for the Least Squares
approach (i.e. Minimizing S2).

TAYLOR SERIES EXPANSION

Expanding {81(51.e2....,em)....,gn(e1,ez,...,em)}

= (a1,...,an)+2[g1.e eeesBp o Je, +IIO0(e

€.).
i i1 1

RESULT#3

Let 8, have an independent Normal distribution with mean, 61(a1,....un)

and variance, 02.

2
(ei,aI) vt ei.a1ei,un
2} u 219 ¢ . . . T
E{(S)¢} = [1/0°] L [u1...un] : . : [u1... un]
2
8 ,anfi,a1 v (%, an’
Proof:
- - 2 -
S 2{([6i 61(a1...an)]/o )ei.a1 u, ces
- . 2
+ Z{([e1 61(a1...an)]'o )ei’an u
- - 2
. 2{([6y-6,(al...an)]/a®)(0y (g uy *+ eov * 8y oyl
Therefore,




E((S)?)

- E{Zz[ei/ozl[e /02][8i of Yt eer * 8y on un][eJ at Wt oeee 8y o u, 1)
= [1/0“J[££E{(eiuj)(9 g Uyt e 0 un)(eJ at Yttt 8y on u )]
- 2

[1/0 ][7:(!31'm A ei,an u )(ei a1 Yyt et 1 an n)]

RESULT#4

Let e1 have an independent Normal distribution with mean, ei(u1,...,an)

and variance, o2,

2 -1
] B e 8 a%an
MSE, = [02] T : .. : + 0(o")
2
ei.u1ei an . (ei,un)

Proof:
L= 2(61°91(X1..Xn))2/(20’) + (n/2)1n(2m0?)

Recall that gk ¢ is evaluated at the true location.
!

The Mean Standard Error matrix is by definition

(X1-a1)2 ... (X1-a1)(Xn-an)

MSE = E{ : ) . : }

(X1-a1)(Xn=an) ... (X1-an)2

= E{22(81,e TR -

T y
. ) (g1 SUFEPRNY: S )eie } + 0(a™)

'Ei * J nl .j J

- T 2 4y
2(31'81,...,gn ) (81 ""’8n.ei)° + 0(o")

vei '€y

Recall that (31,...,gn) are the (X1,...,Xn) determined where LX1""' LXn-O.

Differentiating the defining equations with respect to €y




LX1-0 se e L

gn,ei

x3 tzn( 2)(e

= E7(-2) (e

2
Since, (2¢ )LxJ

=, I1(-2) (e

LxJe = -2

Therefore,

31,51

g
n,eg

Thus,

(31.e1

Xn

)
i 1,%X3

=) ===)

t,X]

2z(e

2z(e

g,  ,.ouv8
n ei 1, ei 1,€

t,XJ
= L7(-2) (e

dLX1

dL, /de

Xn

X1xi tt

XtXn °°°

/de

o5

. Lx1x131,e1"'

L

1= Lynx18q,e troetb

i

-1
Lx1%n L

)(et(x1,...,xn)-ét)/(zoz)

)(et’Xk

t,XJ

/(202)

2
t,X1)

t,xn’ (O, x1

2

)/ (26%)

i

t,X3Xk

(X1

2L(e )(o

LY

t, X1

) e 25(8, .)°

t,Xn

)

*Ly1xn8n, eyt

Xangn,e

,...,Xn)-et(a1,...,an)] *tg12(e

=0
x1ei

=0

+L
Xnei

i

)(8, (X1,...,Xn)=8,)1/(20%)
(Recall that e =0)

t’XJ)[et(m,...,xn)-et(on....,mn)'«e‘,‘(m,...,um)-ﬁ ]
)[et

t xj)e

28; x1

26

i,Xn
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However, gi is evalvated at the true, which when done produces the desired

result
2 -1
(91,a1) cee (Gi.a1)(ei.an)
2
(ei,an)(ei,a1) vee (ei,an)
RESULT#5
s - 1 + 0(e°) _s
u” MSE (u’)" 2 N 21 =57 where u’ = (“1'“2"“'“n)
. u MSEL (u’)
Proof:
From Result # 2
(Uy,0000u ) MSE (u1.....un)T 2 1+0( %)
n E{(S)?}
From Result # 3
2
(61,01) e ei,a1ei,an
E{(S)%}=[1/02]F [u,...u ]| : - . ¢ ltu... w7
1 n . . . 9 n
2
8 ,anf1,01  °°° (8 an’
From Result # &4
2 -9
By 410  *++ 84 41%,an
MSE, = [6?] 2 : .- . : + 0(o%)

2
®,a1%,an (81 ,4n)

RESULT#6

Maximum eigenvalue of MSEL S Maximum eigenvalue for other methods

Proof:

Let AL be the maximum eigenvalue of the L method.

Let Aother be the maximum eigenvalue of some method.




Let ¥” be the eigenvector associated with AL.

1 1

= -A
4 -1 )T
v MSEL (v7) 1/).L

L

From Result # 5, it follows that

o> )T
AL S v MSEother(v )
%> 23T
Finally, since MSEother is a positive definite matrix, V MSEother(v ) is
between the minimum and minimum eigenvalues for MSEother' Thus,
AL § Aother

RESULT#7

Minimum eigenvalue of MSEL S Minimum eigenvalue for other methods
Proof:

Let Ao r be the minimum eigenvalue of some method.

the
Let AL ve the minimum eigenvalue of the L method.

JN
Let ¥v7 be the eigenvector associated with Aother'

A =
L
1/)\L
1
max v’ MSEE1 ()7
94 YT o
£ v Msgother (v”) Aother Recall Result # §
Therefore,
xL s Aother

Observations - Comparing error ellipses between the L and any other estimator
at the same confidence level we note:

1) The largest axis of the L error ellipse is smaller than the
largest axis of the other estimator.

2) The smallest axis of the L error ellipse is smaller than the
smallest axis of the other estimator.

3) If one is only in two dimensions, 1) and 2) are enough to imply that
the L error ellipse is smaller in size.
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In n dimensions, intermediate axes must also be considered in any discussion
of error ellipse size, thus 1) and 2) are not sufficient to show that the L
error ellipse is smaller in the general case.
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